Foolproof convergence in multichain Policy Iteration

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Properties of Policy Iteration

This paper analyzes asymptotic convergence properties of policy iteration in a class of stationary, infinite-horizon Markovian decision problems that arise in optimal growth theory. These problems have continuous state and control variables and must therefore be discretized in order to compute an approximate solution. The discretization may render inapplicable known convergence results for poli...

متن کامل

Convergence Analysis of Policy Iteration

Adaptive optimal control of nonlinear dynamic systems with deterministic and known dynamics under a known undiscounted infinite-horizon cost function is investigated. Policy iteration scheme initiated using a stabilizing initial control is analyzed in solving the problem. The convergence of the iterations and the optimality of the limit functions, which follows from the established uniqueness o...

متن کامل

Convergence of Simulation-Based Policy Iteration

Simulation-based policy iteration (SBPI) is a modification of the policy iteration algorithm for computing optimal policies for Markov decision processes. At each iteration, rather than solving the average evaluation equations, SBPI employs simulation to estimate a solution to these equations. For recurrent average-reward Markov decision processes with finite state and action spaces, we provide...

متن کامل

On the Convergence of Optimistic Policy Iteration

We consider a finite-state Markov decision problem and establish the convergence of a special case of optimistic policy iteration that involves Monte Carlo estimation of Q-values, in conjunction with greedy policy selection. We provide convergence results for a number of algorithmic variations, including one that involves temporal difference learning (bootstrapping) instead of Monte Carlo estim...

متن کامل

Policy iteration algorithm for zero-sum multichain stochastic games with mean payoff and perfect information

We consider zero-sum stochastic games with finite state and action spaces, perfect information, mean payoff criteria, without any irreducibility assumption on the Markov chains associated to strategies (multichain games). The value of such a game can be characterized by a system of nonlinear equations, involving the mean payoff vector and an auxiliary vector (relative value or bias). We develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1978

ISSN: 0022-247X

DOI: 10.1016/0022-247x(78)90044-6